

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Large Area Photodetector Development

Collaboration Meeting:

Organization & Milestones

Bob Wagner, Project Physicist

Collaboration Meeting, 15-16 Oct 2009

Meeting Purpose and Organization

Purpose:

- Get to know one another
- Overview of the Project
- Discuss challenges, plans, problems, great ideas,...
- Plan our activity for the year

Organization:

- Please upload your presentation before your talk time
 - Remote participants can follow along
 - This will archive our talks for later review
- Sign up for dinner if you haven't already. Can't guarantee a place now, but we'll try
- Emphasis is on discussion. Feel free to ask questions, make comments during talks.
 Speakers: Please stay on time or end early so we can have discussion

We have approval, funding started ~7 Aug 2009, DOE Site Visit gave good marks to work so far

Now we have to deliver!

Milestones: Office of High Energy Physics

ATTACHMENT A – CONTRACTOR RECOVERY ACT PERFORMANCE REQUIREMENTS Advanced Technology R&D augmentation (2005170) - ANL KA/CH12/9/ARRA-1, Rev 00

Section A: Contractor Recovery Act Schedule or Milestone Requirements	
Identify and characterize Photo-electron Emission (PE) properties of materials for photocathode development.	June 30, 2010
Demonstration of amplification with gain \geq 300 with an atomic layer deposition (ADL)-functionalized micro-channel plate.	June 30, 2010
Achieve a differential time resolution ≤ 10 picoseconds and a space resolution ≤ 1 mm in vacuum with a 50-ohm transmission-line anode suitable for multiphotoelectron high-precision applications.	June 30, 2010
Section B: Contractor Recovery Act Performance Outcomes and Measures	
Upgrade existing collaboration vacuum-transfer facilities to match the 8"- square module assembly.	January 31, 2010
A design, including costing and interfacing with vendors of production sealed-glass tubes, for a vacuum-transfer/assembly facility for the 8"- square module assembly.	June 30, 2010
Design a prototype 2 channel ASIC with sampling rate \geq 20 gigasamples per second, analog bandwidth \geq 1.5 gigahertz, and a capacitor-sampling-chain and timing-generator blocks.	June 30, 2010
Demonstration of an operational 8"- square photocathode.	June 30, 2010
Demonstration of the vacuum seal of the 8"- square window to the body.	June 30, 2010
Section C: Contractor Recovery Act Deliverables	
Summary report on progress during the year, including chapters on the individual technical achievements and knowledge gained.	June 30, 2010

Milestones: from proposal

9 Milestones

9.1 Year 1

- 1. Photo-cathode Group Siegmund, Attenkofer, Insepov, Pellin, Yusof
 - (a) Demonstrate a quantum efficiency ≥ 25 % with a bialkali photo-cathode on a solid glass plate, with acceptable dark current:
 - (b) Produce a $8'' \times 8''$ conventional photo-cathode with photo-cathode quantum efficiency. $\geq 25 \%$.
 - (c) Screen and test flat and morphology-based negative-electron-affinity materials and compare to simulation.
- 2. Glass Substrate Group Tremsin, Frisch, Siegmund, Hau, Pellin, Sullivan
 - (a) Develop and characterize 32.8mm glass substrates with 10-40 micron pores diameters L/D of 40, a bias angle of 8 degrees, and an open area ratio $\geq 80\%$ suitable for an MCP;
 - (b) Acquire and test $8'' \times 8''$ plates;
 - (c) Evaluate the process economics.
- 3. Advanced Substrate Group Wang, Routkevitch, Pellin
 - (a) Achieve straight pores in AAO with diameter ≥ 0.7 microns (no-funnel option), 40 < L/D < 100, and open-area ratio $\geq 60 \%$;
 - (b) Demonstrate the feasibility of making AAO funnels suitable for photo-cathode deposition;
 - (c) Produce blanks of 32.8mm AAO plate for tests and MCP development.
 - (d) Evaluate the process economics.
- 4. Atomic Layer Deposition Group Elam, Insepov, Sullivan, Libera, Wang
 - (a) Systematically characterize the leading ALD materials for Photo-emission and Secondary Electron Emission (SEE);
 - (b) Demonstrate gain > 1000, non-uniformity to < 25% with ALD on a 32.8mm glass capillary substrate MCP, with acceptable dark current;
- 5. **Testing Group** Adams, Veryovkin, Attenkofer, Genat, May, Nishimura, Ramberg, Ronzhin, Va'vra, Varner, Wetstein, Zinovev
 - (a) Set up test protocols for the various test facilities and make appropriate modifications to accommodate up to $8'' \times 8''$ plates.
 - (b) With the Simulation Group, set up data-base for systematic codification of test results.
 - (c) Expeditiously test the functionalized development units from the ALD and Photo-cathode Groups
- 6. Simulation Group Ivanov, Beaulieu, Abrams, Genat, Insepov, Roberts, Tremsin, Tang
 - (a) With the Test Group, set up data-base for systematic codification of test results.
 - (b) Systematically compile existing data on materials and define the needed measurements for characterization by the Emissive Materials Group;
 - (c) Complete the MCP simulation code including space charge;
 - (d) Validate the simulation with commercial tubes;
 - (e) Complete a first-generation glass-substrate-based MCP-PMT simulation;
 - (f) Complete a first-generation AAO/ALD-based MCP-PMT simulation;
 - (g) Optimize funnel and pore shapes for an MCP-PMT with opaque photo-cathode.

- 7. Mechanical Assembly Group Stanek, Northrop, Anderson, Forbush, Genat, Ronzhin, Sellberg, Siegmund, Tremsin. Wetstein. Zhao
 - (a) Identify candidate materials, vendors, and construction methods for the $8'' \times 8''$ and $4' \times 2'$ modules;
 - (b) Complete an initial mechanical/electrical design for proto-type glass and ceramic $8'' \times 8''$ modules, and construct mechanical proto-types (no photo-cathode yet);
 - (c) Measure the vacuum, residual gases, out-gassing rates, and surface chemistry of proto-type modules;
 - (d) Assemble a complete Development (32.8mm) AAO/ALD or glass capillary MCP-PMT with conventional photo-cathode for testing.
 - (e) Evaluate the process economics.
- 8. **Electronics Group** Varner, Genat, Anderson, Bogdan, Drake, Frisch, Heintz, Kennedy, Nishimura, Rosen, Ruckman, Tanq
 - (a) Construct and test a $8'' \times 8''$ proto-type transmission-line anode (e.g. velocity, time resolution, cross-talk, attenuation);
 - (b) Construct a first-generation clock distribution system;
 - (c) Construct a first-generation DAQ system;
 - (d) Construct a first-generation anode PC card with existing sampling chips [23, 22];
 - (e) Submit a first IBM-8RF chip with timing control, sampling capacitor chain, and ADC blocks.
- 9. $\textbf{Integration Group} \qquad \textit{Drake}, \textit{Genat}, \textit{Anderson}, \textit{Byrum}, \textit{Frisch}, \textit{Ronzhin}, \textit{Sanchez}, \textit{Siegmund}, \textit{Tremsin}, \textit{Wetstein}, \textit{Wetstein}, \textit{Sanchez}, \textit{Siegmund}, \textit{Tremsin}, \textit{Wetstein}, \textit{Sanchez}, \textit{Siegmund}, \textit{Tremsin}, \textit{Sanchez}, \textit{Siegmund}, \textit{Tremsin}, \textit{Wetstein}, \textit{Sanchez}, \textit{Siegmund}, \textit{Sanchez}, \textit{Sanc$
 - (a) Install the first-generation clock distribution system and DAQ computer in the integration area;
 - (b) Integrate the first-generation DAQ and MCP with first-generation front-end card with existing sampling chips;
 - (c) Integrate the individual tests into a user-accessible system suite.
- 10. Management Group Frisch, Siegmund, Byrum, Pellin, Weerts
 - (a) Identify the senior staff member at Argonne responsible for tracking costs, schedules, responsibilities, and reviews:
 - (b) Identify co-leaders for each of the groups.
 - (c) Establish the project in the appropriate project manager software;
 - (d) Establish preliminary major decision points for photo-cathode, geometry, substrate, module size, mechanical assembly, and cost;
 - (e) Select internal review committees and schedule reviews;
 - (f) Survey and clarify IP and future production relationships with industry;
 - (g) Evaluate the process economics for each major component.

So What's My Job Here

- Work with Henry, Karen, and Dean on all the items below to assure our success
- Keep the focus on milestones and overall development of a functional 8"×8" detector that meets our design goals: QE, gain, uniformity, time resolution, cost.
- Attempt to have a grasp of the current status of the grand picture
 - Where we are succeeding and progressing well
 - Where we are having problems, what is not working
 - Coordinate the work in each area so we progress in tandem
- Make sure you have what you need: materials, equipment, contracts
 - Be aware that I can ask, beg, cajole,...
 - I cannot set prices, negotiate terms, make awards, change orders w/o approval
 - Administration at Argonne may seem (or actually be) aggravating, slow, bureaucratic, but most people here are friendly, helpful and do their job well.
 - Pay in cash and it will be easier when we need credit

